Перевод: с русского на все языки

со всех языков на русский

наличие чего-л где-л

  • 1 присутствие

    с.

    в прису́тствии кого́-л — in smb's presence

    ва́ше прису́тствие необходи́мо — your presence / attendance is essential

    э́то произошло́ в моём прису́тствии — it was done in my presence [in front of me]

    э́то бы́ло ска́зано в моём прису́тствии — it was said in my hearing, it was said before me

    вое́нное прису́тствие — military presence

    прису́тствие нитра́тов в овоща́х — presence of nitrates in the vegetables

    3) уст. ( учреждение) office
    ••

    прису́тствие ду́ха — presence of mind

    отсу́тствие вся́кого прису́тствия — см. отсутствие

    Новый большой русско-английский словарь > присутствие

  • 2 при

    предл. с предлож. пад.
    1) (возле, у) при кому, при чому, попри кому, попри чому, коло кого, коло чого, край кого, край чого. [Була в мене небога, при мені вона і зросла (М. Вовч.). Одну взяли попри коні, другу взяли попри возі (Пісня). Котору дитину любила-кохала - край себе не маю (Макс.). Насипали край дороги дві могили в житі (Шевч.). З якою бувало жадобою коло книжок історичних приписки перечитуєш (Куліш)]. Город лежит при реке - місто лежить коло річки, понад річкою. При городе слободка - (по)при місті (городі) слобода (слобідка). При входе, при въезде (при обозначении места) - з приходу, з приїзду, на приході, на приїзді. [Згоріло сімнадцять дворів зараз з приїзду (Гр.). З приходу в селі (Радом.). Нора з приходу узенька (Драг.). Його хата у містечку на приході (Звяг.)];
    2) (в присутствии кого) при кому, перед ким. Это было сказано при свидетелях - це було сказано при свідках, перед свідками. Не при вас будь сказано - не перед вами хай буде сказано. При отце - перед батьком. [Я її перед батьком вилаяла (Проскур.)];
    3) (для обозначения времени: при жизни кого, во времена кого, чего) за кого, за чого. [Дай-же, Боже, - козаки промовляли, - за гетьмана молодого жити, як за старого (Ант.-Драг. II)]. При мне, при нас (в наше время) - за мене, за нас. [За мене то вже в дворі жили ми спокійненько (М. Вовч.). Не за нас се стало, не за нас і перестане (Номис)]. При покойном отце - за покійного батька. При жизни - за життя. [А сам собі за життя ще похорон справляє (Рудан.)]. При жизни отца - за батькового життя. При крепостном праве - за панського права, за панщини. [Він був ще за панського права кухарем (Грінч.)]. При республиканском правлении - за республіканського урядування. При солнце (до захода солнца, пока оно светит) - за сонця. [Наш господар дозорця вижав жито за сонця (Грінч. III)];
    4) (для обозначения связи, принадлежности, условного отношения к чему-л.) при кому, при чому, за чого, на чому, на що. Состоять секретарём при ком - бути за секретаря при кому, у кого. Американский посланник при французском дворе - американський посол при французькому дворі. Остаться при университете, при кафедре - залишитися при університеті, при катедрі. При заводе есть и кузница - при заводі є й кузня. При нём нашли бумаги - при ньому знайдено папери. Иметь при себе оружие - мати при собі (з собою) зброю. При ком - за ким. [За нею й скотина плодиться, за нею й дробина водиться (Г. Барв.)]. Читать при свече, при солнечном свете, при электрическом освещении - читати при свічці, при сонячному світі, при електричному світлі. При приближении чего-л. - при наближенні и -нню чого. [Котрі були маєтніші, повиїздили при наближенню зарази в гори (Франко)]. При наступлении грозы - при початку грози, як гроза надходила. При исполнении служебных обязанностей - при виконанню службових обов'язків, під час виконання службових обов'язків. При подписании этого условия - при підписанні цієї умови, під час підписання цієї умови. При заключении договора - при згоді. [При згоді були люди (Кам'ян.)]. При обыске найдено - під час трусу знайдено. При одной мысли об этом - на саму згадку про це. При этом известии - на цю звістку. [Люборацький! підвода до тебе! - хтось гукнув. Аж затрясся малюк на цю звістку (Свидн.)]. При первом слове - на першому слові. При этом слове, при этих словах - на цім слові, на цих словах. [На сім слові чую - торохтять колеса (Кониськ.)]. При этом слове он вздрогнул - на цім слові він здригнувся. При первом же вопросе он смешался - на першому-ж питанні він збентежився, сплутався. При звуке его голоса - з звуком його голоса. При малейшем шуме, шорохе - на найменший шум, шелест. При каждом вздохе - за кожним подихом. [Той пил набивавсь у ніздрі за кожним подихом (Крим.)]. При первом случае, который мне представится - при першій нагоді, з першою нагодою, що матиму, що мені трапиться. При всяком случае - при кожній нагоді, кожної нагоди. При случае поговорите с ним о моём деле - як буде нагода, при нагоді поговоріть з ним про мою справу (в моїй справі). Я вспомню об этом при случае - я згадаю про це при нагоді. При гробовом молчании - при могильній тиші, під могильну тишу. При громких криках толпы - під голосні вигуки натовпу. При помощи - см. Помощь. Быть при оружии - бути при зброї. Быть при деньгах - бути при грошах. При скорости 30 вёрст в час - при скорості 30 верстов у (на) годину. Длина окружности при радиусе равном… - довжина округу при радіусі рівному… При температуре в 100 градусов - при температурі в 100 градусів, під температуру в 100 градусів. При давлении в 740 милиметров - при тисненні (під тисненням) в 740 міліметрів. При прочих равных условиях - (по)при инших однакових умовах, за иншими однаковими умовами. При такой жизни - по такому життю. [Що-дня тов карти грали, то пісеньок співали. Не гадки нашій панії по такому життю (М. Вовч.)]. При таких заработках можно хорошо жить - по таких заробітках можна добре жити. При всех своих значительных недостатках, произведение это имеет и несомненные достоинства - (по)при всіх своїх чималих вадах, твір цей має і безсумнівні вартості. При этих, при таких обстоятельствах, условиях - за цих, за таких обставин, умов, за цими, за такими обставинами, умовами, по цих, по таких обставинах, умовах. [Легко зрозуміти, як почувало себе українське письменство за таких обставин (Єфр.)]. При тех или иных исторических обстоятельствах - за тих чи инших історичних обставин (Єфр.), за тими чи иншими історичними обставинами, по тих чи инших історичних обставинах. При всём своём уме он был обманут - з усім своїм розумом він був одурений. При всём том - з усім тим. Прилагаемое при сем письмо - доданий до цього лист. Лежать, находиться при смерти - лежати, бути при смерті, на смерті, (образно) стояти на божій дорозі. [На смерті побивавсь цілу ніч (Черк.)].
    * * *
    предл. с предложн. п.
    1) ( для обозначения близости по месту) ко́ло, бі́ля (кого-чого), при (кому-чому); ( подле) побі́ля и побіля́ (кого-чого); ( рядом) по́ряд, по́руч (кого-чого, з ким-чим); ( близ) під (чим); (у) край, окра́й (кого-чого)

    го́род лежи́т при реке́ — мі́сто лежи́ть ко́ло (бі́ля, побі́ля) рі́чки (ріки́)

    жи́ть при ста́нции — жи́ти ко́ло (бі́ля, при) ста́нції

    при вхо́де стои́т часово́й — ко́ло вхо́ду (бі́ля вхо́ду, при вхо́ді) стої́ть вартови́й

    при доро́ге — при доро́зі, край доро́ги

    би́тва при Бородине́ — би́тва (бій) під Бородіно́м (ко́ло Бородіна́, бі́ля Бородіна́)

    он находи́лся всё вре́мя при мне — він був весь час ко́ло (бі́ля, по́руч) ме́не

    при сём прилага́ются докуме́нты — до цьо́го додаю́ться докуме́нти

    2) (для указания на наличие чего-л. рядом и в связи с чём-л., а также для указания на службу где-л.) при (кому-чому)

    при заво́де есть библиоте́ка — при заво́ді є бібліоте́ка

    оста́вить при университе́те — залиши́ти (лиши́ти) при університе́ті

    чи́слиться при шта́бе — рахува́тися при шта́бі

    при дворе́ — при дворі́

    быть при ме́сте — бу́ти на поса́ді

    3) (для указания на наличие чего-л. у кого-л.) при (чому)

    быть при де́ньгах — и

    при деньга́х — бу́ти при гро́шах

    быть при ору́жии — бу́ти при збро́ї

    оста́ться при свои́х — ( в результате игры) зали́ши́тися при свої́х

    при часа́х — з годи́нником, ма́ючи при собі́ годи́нник

    4) (при обозначении лица, имеющего в наличии что-л.; под присмотром, в сопровождении, под начальством кого-л.) при (кому-чому); (с) з, із (ким-чим)

    де́ньги бы́ли при мне — гро́ші були́ при мені́ (зі мно́ю)

    5) ( в присутствии) при (кому-чому), в прису́тності (кого-чого)

    при посторо́нних — при сторо́нніх

    при свиде́телях — при сві́дках

    при мои́х глаза́х — на мої́х оча́х, у ме́не на оча́х

    6) (для указания на сопутствующие обстоятельства, условия, при которых что-нибудь происходит) при (чому); ( в отдельных выражениях) за (чого), а также переводится другими предлогами или конструкциями без предлогов

    при ско́рости в сто киломе́тров — за шви́дкості в сто кіломе́трів

    при температу́ре в три́дцать гра́дусов — за температу́ри в три́дцять гра́дусів

    при жела́нии — при бажа́нні

    при усло́вии за — умо́ви; ( с условием) з умо́вою

    при таки́х усло́виях — за таки́х умо́в

    при вся́кой пого́де — за вся́кої пого́ди

    при гро́мких аплодисме́нтах зри́телей — під гу́чні о́плески глядачі́в

    при одно́м воспомина́нии об э́том — на саму́ зга́дку про це; від само́ї зга́дки про це, від само́го спо́гаду (спо́мину) про це

    при одно́й мы́сли об э́том — від само́ї ду́мки про це

    при э́тих слова́х он поклони́лся — сказа́вши це, він вклони́вся

    при зву́ке его́ го́лоса все огляну́лись — почу́вши його́ го́лос, усі́ огляну́лися (озирну́лися)

    я присоединю́сь к вам при пе́рвом ва́шем зо́ве — я приєдна́юся до вас на пе́рший ваш за́клик

    7) (для указания на обстоятельство, условие, событие, во время которого что-нибудь происходит) під час (чого), при (чому)

    при исполне́нии служе́бных обя́занностей — під час викона́ння (вико́нування) службо́вих обо́в'язків

    при подписа́нии догово́ра — під час підписа́ння до́говору и догово́ру

    при пе́рвом появле́нии чего́ — ті́льки (як ті́льки) з'я́виться (в настоящем: з'явля́ється; в прошлом: з'яви́лося) що

    при жи́зни — за життя́

    при слу́чае — при наго́ді

    8) (для указания на эпоху, период, время, в течение которого что-нибудь совершается) за (кого-чого), під час (чого)

    при Пари́жской комму́не — за Пари́зької кому́ни, під час Пари́зької кому́ни

    при Петре́ Пе́рвом — за Петра́ Пе́ршого

    9) ( посредством) за допомо́ги (чого), че́рез (що); ( благодаря) завдяки́ (чому); ( вследствие) вна́слідок (чого)

    при по́мощи чего́ — за допомо́ги (з допомо́гою) чого́

    10) ( несмотря на) при (чому); по́при (що)

    при всех мои́х уси́лиях я не могу́ убеди́ть его́ — по́при всі мої зуси́лля я не мо́жу перекона́ти його́

    при всём том — при всьо́му то́му

    Русско-украинский словарь > при

  • 3 с

    1. предлог
    с род. п.
    при обозначении предмета, места, с поверхности которого или от которого удаляется, отделяется кто-что-л.
    -дан/-дән
    2. предлог
    с вин. п.
    при указании на приблизительную меру, примерное количество чего-л.
    самаһы, тиклем, саҡлы, -лап/-ләп, -дай/-дәй, -ға/-гә яҡын
    3. предлог
    с твор. п.
    при обозначении совместности, указывая на предмет или лицо, участвующее в чём-л. вместе с кем-чем-л.
    менән
    4. предлог
    с твор. п.
    при указании на наличие чего-л. в чём-л.
    -лы/-ле, -ған/-гән
    5. предлог
    с твор. п.
    при обозначении характера, образа действия
    -ып/-еп
    6. предлог
    с твор. п.
    при обозначении предмета, лица, посредством или с помощью которого осуществляется действие
    менән, арҡыры, -лап/-ләп
    7. предлог
    с твор. п.
    при указании на лицо или предмет, с которым что-л. происходит, который испытывает, претерпевает что-л.
    -ды/-де, менән, -ға/-гә
    8. предлог
    с твор. п.
    при обозначении цели действия
    менән
    9. предлог
    твор. п.
    при обозначении лица или предмета, к которому устанавливается какое-л. отношение другого лица или предмета
    менән

    с миру по нитке – голому рубашка — ил төкөрһә – күл булыр

    илдән еп йыйһаң, яланғасҡа күлдәк булыр
    10. предлог
    при обозначении места, откуда направлено движение, действие
    -дан/-дән
    11. предлог
    с род. п.
    при обозначении места, предмета, характеризующего какое-л. лицо или предмет по происхождению, пребыванию где-л. и т.п.
    ...ы, -дан/-дән килгән (алынған)
    12. предлог
    с род. п.
    при указании на время, являющееся начальным моментом в развитии какого-л. действия, состояния
    -дан/-дән (алып, башлап, бирле
    13. предлог
    с род. п.
    при обозначении лица, предмета, от которого берётся, получается, требуется что-л.
    -дан/-дән
    14. предлог
    с род. п.
    при обозначении предмета, лица, служащего образцом для подражания, воспроизведения
    -дан/-дән, -дың/-дең
    15. предлог
    с род. п.
    с существительными `согласие`, `разрешение`, `позволение` при указании на основание для совершения действия
    менән, буйынса, нигеҙендә
    16. предлог
    с род. п.
    при указании причины состояния, действия
    -дан/-дән
    17. предлог
    с род. п.
    при обозначении предмета, орудия, с помощью которого совершается действие
    менән (башлап), -дан/-дән (башлап)

    Русско-башкирский словарь > с

  • 4 со

    1. предлог
    с род. п.
    при обозначении предмета, места, с поверхности которого или от которого удаляется, отделяется кто-что-л.
    -дан/-дән
    2. предлог
    с вин. п.
    при указании на приблизительную меру, примерное количество чего-л.
    самаһы, тиклем, саҡлы, -лап/-ләп, -дай/-дәй, -ға/-гә яҡын
    3. предлог
    с твор. п.
    при обозначении совместности, указывая на предмет или лицо, участвующее в чём-л. вместе с кем-чем-л.
    менән
    4. предлог
    с твор. п.
    при указании на наличие чего-л. в чём-л.
    -лы/-ле, -ған/-гән
    5. предлог
    с твор. п.
    при обозначении характера, образа действия
    -ып/-еп
    6. предлог
    с твор. п.
    при обозначении предмета, лица, посредством или с помощью которого осуществляется действие
    менән, арҡыры, -лап/-ләп
    7. предлог
    с твор. п.
    при указании на лицо или предмет, с которым что-л. происходит, который испытывает, претерпевает что-л.
    -ды/-де, менән, -ға/-гә
    8. предлог
    с твор. п.
    при обозначении цели действия
    менән
    9. предлог
    твор. п.
    при обозначении лица или предмета, к которому устанавливается какое-л. отношение другого лица или предмета
    менән
    10. предлог
    при обозначении места, откуда направлено движение, действие
    -дан/-дән
    11. предлог
    с род. п.
    при обозначении места, предмета, характеризующего какое-л. лицо или предмет по происхождению, пребыванию где-л. и т.п.
    ...ы, -дан/-дән килгән (алынған)
    12. предлог
    с род. п.
    при указании на время, являющееся начальным моментом в развитии какого-л. действия, состояния
    -дан/-дән (алып, башлап, бирле
    13. предлог
    с род. п.
    при обозначении лица, предмета, от которого берётся, получается, требуется что-л.
    -дан/-дән
    14. предлог
    с род. п.
    при обозначении предмета, лица, служащего образцом для подражания, воспроизведения
    -дан/-дән, -дың/-дең
    15. предлог
    с род. п.
    с существительными `согласие`, `разрешение`, `позволение` при указании на основание для совершения действия
    менән, буйынса, нигеҙендә
    16. предлог
    с род. п.
    при указании причины состояния, действия
    -дан/-дән
    17. предлог
    с род. п.
    при обозначении предмета, орудия, с помощью которого совершается действие
    менән (башлап), -дан/-дән (башлап)

    Русско-башкирский словарь > со

  • 5 присутствие

    1. (личное пребывание) η παρουσία 2. (наличие чего-л. в чём-л., где-л.) η ύπαρξη.

    Русско-греческий словарь научных и технических терминов > присутствие

  • 6 синхронизация времени

    1. time synchronization
    2. clock synchronization

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > синхронизация времени

  • 7 в

    1) (где, в чем)...da; içinde

    в стране́ — ülkede

    в столе́ — masa içinde

    учи́ться в шко́ле — okulda okumak

    он спря́тался в куста́х — çalılar arasına gizlendi

    в э́том зале потоло́к вы́ше — bu salonun tavanı daha yüksek

    вот в э́том суть вопроса — işte sorunun özü bu

    бо́ли в поясни́це — bel ağrıları

    боль в желу́дке — mide ağrısı

    2) (куда, во что)...a; içine

    пое́хать в Москву́ — Moskova'ya gitmek

    положи́ть в стол — masa(nın) içine koymak

    визи́т президе́нта во Фра́нцию — cumhurbaşkanının Fransa'yı ziyareti

    нали́ть воды́ в стака́н — bardağa su doldurmak

    возьми́те ру́чку в пра́вую ру́ку — kalemi sağ eliniz içine alın

    он толкну́л меня́ в плечо́ — omuzumu dürttü

    тот толкну́л его́ в грудь — öteki onu göğsünden itti

    капиталовложе́ния в промы́шленность — sanayi yatırımları

    4) (через, сквозь)...dan

    я ви́дел в зе́ркало, как он вошёл — girişini aynadan gördüm

    смотре́ть в замо́чную сква́жину — anahtar deliğinden bakmak

    я уви́дел тебя́ в окно́ — seni pencereden gördüm

    5) ( когда)...da

    в октябре́ — Ekimde

    в сороковы́х года́х — kırk yıllarında

    в про́шлом году́ — geçen yıl

    в бу́дущем году́ — gelecek yıl

    в тот ве́чер — o akşam

    в пя́тницу — cuma günü

    в три часа́ — saat üçte

    во внерабо́чее вре́мя — çalışma saatleri dışında

    в три дня не сде́лаешь — üç günde yapamazsın

    раз в ме́сяц — ayda bir

    два ра́за в ме́сяц — ayda iki kez

    сто ме́тров в секу́нду — saniyede yüz metre

    бума́га в кле́тку — kareli kağıt

    широ́кий в плеча́х — (geniş) omuzlu

    рука́, со́гнутая в ло́кте — dirsekten bükük / bükülü kol

    он был в нару́чниках — elleri kelepçeliydi

    в жи́дком состоя́нии — sıvı halinde

    преиму́щество в четы́ре очка́ — dört sayılık avantaj

    челове́к в чёрном — karalı adam

    чемпио́н ми́ра в тяжёлом ве́се — ağır sıklet dünya şampiyonu

    де́ти в во́зрасте 10-12 лет — 10-12 yaşlarındaki çocuklar

    7) (при указании веса, размера и т. п.)...lık

    ве́сом в то́нну — bir tonluk

    цено́ю в два рубля́ — iki rublelik

    давле́ние в пять атмосфе́р — beş atmosferlik basınç

    бриллиа́нт в десять кара́т — on kıratlık pırlanta

    под угло́м в 30 гра́дусов — 30 derecelik bir açı altında

    ле́стница в де́сять ступе́ней — on basamaklı merdiven

    8) (при исчислении в мерах веса и т. п.) olarak

    в то́ннах — ton olarak

    в рубля́х — ruble olarak

    9) (при указании расстояния от чего-л.) mesafede, ötede

    в киломе́тре от дере́вни — köyden bir kilometre uzaklıkta / mesafede, köyün bir kilometre ötesinde

    в трёх ми́лях от бе́рега — kıyıya üç mil uzaklıkta

    в пяти́ киломе́трах южне́е го́рода — şehrin beş kilometre güneyinde

    в десяти́ ме́трах леве́е чего-л.on metre solunda

    10) (покрытый, запачканный чем-л.)...lı

    ска́терть в пя́тнах — lekeli masa örtüsü

    лицо́ его бы́ло в мы́ле — yüzü sabunluydu

    у неё ру́ки бы́ли в те́сте — elleri hamuruydu

    он вы́ступит в тяжёлом ве́се (о борце) — ağır sıklette / ağırda güreşecek

    он да́же в очка́х пло́хо ви́дит — gözlükle bile iyi görmüyor

    испо́льзовать что-л. в ли́чных интере́сах — (bir şeyi) kişisel çıkar için kullanmak

    ••

    в двух, трёх,... не́скольких, мно́гих места́х гл. взорва́ть, разорва́ть, ра́нить и т. п.) — iki, üç,... birkaç, birçok yerinden

    опубликова́ть рома́н в двух тома́х — romanı iki cilt halinde yayımlamak

    Русско-турецкий словарь > в

  • 8 эше

    эше
    Г.: эче
    1. нар. ещё; дополнительно, вдобавок, снова, опять

    Эше икмыняр шомакым каласаш сказать ещё несколько слов;

    эше муралташ ещё спеть.

    Самырык рвезе дек эше икмыняр еҥ ушныш. В. Иванов. К молодому парню присоединилось ещё несколько человек.

    Южгунам эше йӱштӧ мардеж витара. А. Асаев. Иногда ещё холодный ветер пронизывает.

    – Эше ик гана ойлем, арам мылам шыдешкет. В. Иванов. – Ещё раз говорю, напрасно злишься на меня.

    Сравни с:

    адак
    2. нар. ещё; до сих пор, до того времени, пока, пока что

    Эше палаш огыл ещё не знать;

    эше ужаш огыл ещё не видеть;

    эше ондак ещё рано;

    эше пычкемыш ещё темно.

    Корий гына тугак эше нимом ок пале. А. Ягельдин. Только Корий ещё так ничего и не знает.

    Очыни, тушко шыде мардеж эше толын шуын огыл. К. Васин. Вероятно, туда ещё не дошёл злой ветер.

    Лу теҥге окса тунам эше кугу ыле. С. Вишневский. Десять рублей тогда ещё были большие деньги.

    3. нар. ещё; уже (о раннем сроке чего-л.)

    Эше тунамак ещё тогда;

    эше изи годымак ещё в детстве.

    Кушто маска кийымым Савлий ончычшат пален. Эше первый лум вочмекак, вынем ӱмбаке толын лектын. А. Юзыкайн. Савлий и раньше знал, где лежит медведь. Уже после (выпадения) первого снега появился у берлоги.

    (Галина Алексеевна Аркадийлан): Эше школышко коштмет годымак ойленат ыле. Мутетым кучен моштет улмаш. П. Корнилов. Ты говорил, ещё когда в школу ходил. Оказывается, умеешь сдерживать своё слово.

    4. нар. ещё; указывает на наличие возможности, условий, достаточного времени для чего-л.

    – Шуэш эше, кызыт вес пашат шӱй даҥыт. А. Асаев. Ещё успеется, сейчас и другой работы по горло.

    Нимат огыл – нунын черетышт эше шуэш! П. Корнилов. Ничего – их очередь ещё дойдёт!

    Кӧ пала, ала тиде еш эше тиде пӧрт леведыш йымаке погына. И. Караев. Кто знает, возможно, эта семья ещё соберётся под крышей этого дома.

    5. ещё; более, в большей степени (часто при сравнительной степени)

    Эше писынрак куржаш ещё быстрее бежать;

    эше сылнырак лияш ещё красивее быть.

    Мурымо йӱк эше чотрак сургалтеш. Н. Лекайн. Песня (букв. звук пения) ещё громче раздаётся.

    – Авай, – Овдачий эше шыманрак пелештыш. М. Евсеева. – Мама, – ещё ласковее сказала Овдачий.

    6. част. ещё; подчёркивает какой-л. признак, факт, придаёт ему выразительность, усиливает его значение

    Эше кузе тунемаш кӱлеш! М. Рыбаков. Ещё как надо учиться!

    Да, эше мыланем палаш огыл. М. Евсеева. Да, ещё мне не знать.

    (Алвика:) Кок кече мый Веран воктечынже шым ойырло. Ала-кузе эше илышым кодышым. А. Асаев. (Алвика:) Два дня я не отходила от Веры. Неизвестно как ещё в живых оставила.

    Йӧра эше, Овычан эҥертышыже – Миклай коча – уло. А. Юзыкайн. Хорошо ещё, у Овычи есть опора – дед Миклай.

    Марийско-русский словарь > эше

  • 9 дифференциальный манометр

    1. Differenzdruckmessgerät

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > дифференциальный манометр

  • 10 дифференциальный манометр

    1. differential-pressure gage
    2. differential pressure indicator
    3. differential pressure gage
    4. differential manometer
    5. differential gauge pressure

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > дифференциальный манометр

  • 11 дифференциальный манометр

    1. manometre differentile

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > дифференциальный манометр

  • 12 эрык

    эрык
    Г.: ирӹк
    1. свобода; отсутствие стеснений и ограничений в общественно-политической жизни, экономической деятельности общества, какого-л. класса или отдельных людей; воля

    Элын эрыкше свобода страны;

    эрыкым пуаш дать свободу;

    эрыкым сеҥен налаш завоевать свободу;

    эрык верч шогаш стоять за свободу;

    эрыкым шыгыремдаш ограничивать свободу.

    Осал тушманлан – шӱгар! Калыклан – эрык! «Ончыко» Жестокому врагу – могила! Народу – свобода!

    Эрык верчын эрге кайыш сарыш кредалаш. С. Вишневский. Сын ушёл на войну сражаться за свободу.

    2. свобода, воля; отсутствие ограничений, стеснений, запретов в чём-л.; раздолье, приволье

    Эрыкым йӧраташ любить свободу;

    эрыкыш каяш распуститься;

    эрыкыш колташ распустить;

    эрыкым пуаш дать волю (чему-л.).

    – Ынде рвезе калыклан эрыкым пуаш кӱлеш. М. Шкетан. – Теперь молодым надо дать свободу.

    – Эрыкым шижын, марийже вольнаш кайыш. М. Айгильдин. – Почувствовав свободу, её муж распустился.

    3. свобода, воля; состояние того, кто не находится в заключении, в неволе

    Эрыкыш колташ (лукташ) выпустить на свободу;

    эрыкыште кошташ ходить (гулять) на свободе;

    эрыкеш кодаш оставить на свободе.

    Суд тудым (Васлийым) латвич ийлан эрык деч посна кодаш пунчалым лукто. С. Музуров. Суд приговорил Васлия к 15 годам лишения свободы (букв. на 15 лет оставить без свободы).

    Кок арня гыч (Лёня) эрыкыш лектын: титаклаш амалым муын кертын огытыл. М. Сергеев. Через две недели Лёня вышел на свободу: не нашли причины для обвинения.

    4. свобода, воля, раздолье, приволье, простор; широкое, просторное, свободное место, пространство

    – Мемнан кундемыште колызо ден пычалзылан кугу эрык. М.-Азмекей. – В наших краях рыбакам и охотникам большой простор.

    – Кӱтӱчӧ улам да веле ош тӱняште илем. Тыгай яндар южым, эрыкым, кумда кавам, ямле пӱртӱсым кушто эше муат? Ю. Артамонов. – Пастух я и только поэтому живу на белом свете. Где ещё найдёшь такой чистый воздух, свободу, бескрайнее небо, красивую природу?

    5. свобода; возможность делать что-л., для каких-л. действий; наличие благоприятных условий для чего-л.; возможность отдохнуть

    Эрыкым пуаш дать возможность (позволить);

    эрык уке нет возможности.

    – Ме ожно пеш тунемына ыле, но эрык лийын огыл. Школжат шагал, тунемашыжат тӱлаш кӱлеш. Н. Лекайн. – Мы раньше с удовольствием (букв. очень) учились бы, но не было возможности. И школ было мало, и за учёбу надо было платить.

    Пайрем годым кугуланже эрык толеш каналташ. С. Чавайн. В праздник будет (букв. наступает) возможность отдохнуть взрослым.

    Тӱрлӧ паша коклаште эре эрык лийын шога. М. Шкетан. Между разными работами всегда есть свободное время (букв. свобода).

    6. воля; желание, хотение

    – Шке эрыкше лиеш ыле гын, (Григорий Петрович) школжымат кожлашке наҥгаен шында ыле. С. Чавайн. – Была бы его воля, Григорий Петрович и школу-то перенёс бы в лес.

    7. в поз. опр. книжн. свободный, вольный; не знающий гнёта, эксплуатации; пользующийся свободой, волей

    Эрык калык свободный народ;

    эрык мланде свободная земля;

    эрык паша свободный труд.

    Ленин лӱм дене кылдалтын мемнан эрык илышна. Й. Осмин. Наша свободная жизнь связана с именем Ленина.

    Лач коло ияш улына ме коктын, эрык эрге да пеледше элна. А. Бик. Ровно по 20 лет нам двоим, – свободному сыну и нашей цветущей стране.

    8. в поз. опр. книжн. свободы, воли; относящийся к свободе, воле; несущий, утверждающий свободу, волю; свидетельствующий о свободе, воле

    Эрык кечым лишемдаш приближать день свободы;

    эрык мурым мураш петь песню свободы (о свободе).

    Курымлан элна ӱмбалне эрык знамя лойгалтеш. С. Вишневский. Над нашей страной вечно будет реять знамя свободы.

    Корабль эрык остров лийын! М. Емельянов. Корабль стал островом свободы!

    9. в поз. опр. книжн. вольный, вольнолюбивый, свободолюбивый

    Эрык шонымаш вольные мысли.

    Эрык виян марий калыкын шочшыжо лийын поэт. М. Казаков. Поэт был дитём вольного (букв. с вольной силой) марийского народа.

    Сергейын тунемме верже (семинарий) тений марте эрык шӱлыш деч ӧрдыжтӧ шоген. К. Васин. До этого года семинария, где учился Сергей, стояла в стороне от вольного духа.

    10. в поз. опр. свободный, вольный; ничем не стеснённый, привольный, раздольный

    Ӱдыр илыш – эрык илыш. Д. Орай. Девичья жизнь – вольная жизнь.

    Пашана ден волген толжо эрык уш ден эрык шӱм. О. Ипай. Пусть нашим трудом сияют свободные мысли и свободные сердца.

    11. в поз. опр. свободный, вольный; находящийся на свободе, не в заключении; связанный со свободой, с нахождением не в заключении, неволе

    Камерыште шкет шинчет – эртак эрык илыш ушышкем пура. А. Эрыкан. Сидишь в камере один – всё время вспоминается мне жизнь на свободе (букв. свободная).

    Рок казамат деч вара эрык тӱняште могай йоҥгыдо! В. Юксерн. После земляного каземата как просторно на свободе (букв. в свободном мире)!

    12. в поз. опр. привольный, раздольный, просторный (о местности, пространстве)

    Шокшо элла гыч толшо ир кайыквусо тыгай эрык вӱд ӱмбалне куанен чоҥештылыт. М. Рыбаков. Дикие птицы, прилетевшие из тёплых краёв, радостно летают над такой привольной водой.

    Идиоматические выражения:

    Марийско-русский словарь > эрык

  • 13 бактерии

    bacteria, ед. ч. bacterium

    Группа ( тип) микроскопических, преимущественно одноклеточных организмов, обладающих клеточной стенкой, но не имеющих оформленного ядра ( роль его выполняет молекула ДНК), размножающихся делением. Бактерии широко распространены в природе (вызывают гниение, брожение и т. д.); некоторые бактерии используются в сельском хозяйстве (см. также азотобактер), для микробиологического синтеза и др.; болезнетворные ( патогенные) бактерии – возбудители многих болезней человека, животных и растений (см. также палочки и кокки).

    Бактерии, которые могут синтезировать органические вещества из неорганичных в результате фотосинтеза или хемосинтеза (см. также автотрофы).

    Бактерии, обладающие способностью усваивать молекулярный азот воздуха и переводить его в доступные для растений формы. Играют важную роль в круговороте азота в природе (см. также азотфиксация).

    Бактерии, использующие кислород в минимальных количествах для своей жизнедеятельности (см. также анаэробы).

    Бактерии рода Clostridium (например, Clostridium acetobutylicum), у которых основными продуктами сбраживания углеводов являются ацетон и бутанол.

    Бактерии, жизнеспособные в очень кислой среде; получают энергию за счёт окисления железа, серы и других веществ; используются для выщелачивания бедных руд с целью получения меди, цинка, никеля, молибдена, урана и в молочной промышленности.

    Бактерии, которые требуют кислорода для основного ( элементарного) выживания, роста и процесса воспроизводства. Аэробные бактерии очень распространенны в природе и играют главную роль в самых разных биологических процессах (см. также аэробы).

    водородные бактерии — hydrogenotrophic bacteria, hydrogen-oxidizing bacteria

    Большая группа бактерий, способных к использованию ( окислению) молекулярного водорода. Различают анаэробные водородные бактерии, у которых окисление H2 сопровождается восстановлением сульфата до сульфита или CO2 до метана (например, Desulfovibrio vulgaris, Methanobacterium), и аэробные водородные бактерии, которые используют кислород как конечный акцептор электронов и способны к автотрофной фиксации CO2 (например, Alcaligenes eutrophus, Pseudomonas facilis и другие).

    Бактерии, обладающие способностью при росте на некоторых субстратах образовывать газ (H2, CO2 и другие). Это свойство используется как диагностический признак.

    Бактерии, живущие в средах с высоким содержанием солей; встречаются на кристаллах соли в прибрежной полосе, на солёной рыбе, на засоленных шкурах животных, на рассольных сырах, в капустных и огуречных рассолах (см. также галобактерии).

    Бактерии, использующие в качестве источника энергии и углерода углеродсодержащие ( органические) соединения (см. также гетеротрофы).

    Бактерии, которые при окрашивании по Граму могут окрашиваться как в тёмно-синий, так и в розово-красный цвет.

    Бактерии, которые при использовании окраски по Граму обесцвечиваются при промывке. После обесцвечивания они обычно окрашиваются дополнительным красителем ( фуксином) в розовый цвет. Многие грамотрицательные бактерии патогенны.

    Бактерии, которые окрашиваются по методу Грама основным красителем в тёмно-фиолетовый цвет и не обесцвечиваются при промывке.

    Бактерии, способные восстанавливать нитрат через нитрит до газообразной закиси азота (N2O) и азота (N2) (например, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas stutzeri и другие). В отсутствие кислорода нитрат служит конечным акцептором водорода.

    Группа бактерий, для которых характерно наличие хлоросом – органелл, содержащих пигмент бактериохлорофилл.

    Бактерии, имеющие форму спирально извитых или дугообразных изогнутых палочек; обитают в водоёмах и кишечнике животных.

    клубеньковые бактерии — nodule bacteria, root nodule bacteria

    Бактерии, вызывающие образование клубеньков у бобовых растений; относятся к родам Rhizobium, Bradyrhizobium, Sinorhizobium, Azorhizobium (см. также бактероиды).

    Группа бактерий, типичными представителями которой являются роды Escherichia, Salmonella и Shigella; обитают в кишечнике животных и человека.

    Бактерии группы кишечной палочки; относятся к классу граммотрицательных бактерий, имеют форму палочек, в основном живут и размножаются в нижнем отделе пищеварительного тракта человека и большинства теплокровных животных.

    Бактерии, инфицированные умеренным фагом и включившие профаг в ДНК.

    люминесцирующие бактерии — luminescent bacteria, luminous bacteria

    Бактерии, культуры которых в присутствии кислорода светятся белым или голубоватым светом; принадлежат к различным систематическим группам. Распространены в поверхностном слое воды морей. Некоторые виды обитают в органах свечения головоногих моллюсков и рыб.

    Гетероферментативные молочнокислые бактерии рода Leuconostoc. Образуют зооглеи – скопления клеток, заключенные в одну общую капсулу. При этом слизистые экзополимеры выделяются бактериальной клеткой в большом количестве, частично отделяются от неё и образуют рыхлый слизистый слой (см. также слизь).

    Бактерии рода Clostridium (Clostridium butyricum, Clostridium pasteurianum, Clostridium pectinovorum), у которых основными продуктами сбраживания являются масляная и уксусная кислоты.

    Бактерии, для которых температурный оптимум для роста лежит в пределах от 20°C до 42°C; к мезофильным бактериям относятся большинство почвенных и водных бактерий.

    метанобразующие бактерии — methanogenic bacteria, methanogens

    Бактерии, способные получать энергию за счёт восстановления CO2 до метана; морфологически разнообразная группа, строгие анаэробы (см. также метаногены).

    метаноокисляющие бактерии — methane oxidizing bacteria, methane oxidizers

    Бактерии, специализирующиеся на использовании C1-соединений. Относятся к метилотрофным организмам.

    Бактерии, окисляющие метан, а также способные использовать метанол, метилированные амины, диметиловый эфир, формальдегид и формиат. Включают роды Methylomonas, Methylococcus, Methylosinus.

    Тривиальное название группы бактерий, образующих молочную кислоту при сбраживании углеводов. К молочнокислым бактериям относятся роды Lactobacillus и Streptococcus.

    бактерии, не образующие газа non-gas-producing bacteria

    бактерии, не способные адсорбировать фаг nonreceptive bacteria

    Бактерии, безопасные для человека, животных и растений.

    Группа бактерий с преимущественно фотогетеротрофным метаболизмом. Бактерии чувствительны к H2S, их рост подавляется низкими концентрациями сульфида.

    нитрифицирующие бактерии — nitrifying bacteria, nitrifiers

    Бактерии, получающие энергию при окислении аммиака в нитрит или нитрита в нитрат. Наиболее известные виды – Nitrosomonas europaea и Nitrobacter winogradskyi, а также виды рода Nitrosolobus (см. также нитрификация).

    Бактерии, растущие в виде длинных нитей, состоящих из цепочки клеток ( раньше их называли охровыми бактериями). Нитчатые бактерии широко распространены в водах, богатых железом, канавах, дренажных трубах и болотах. Наиболее известна Sphaerotilus natans.

    Нитчатые бактерии рода Leptothrix. Естественные места их обитания бедны пригодными для них органическими веществами, но богаты железом, поэтому органические вещества там часто образуют комплексы с железом. Из-за этого чехлы этих бактерий пронизаны и окружены частицами окиси железа.

    палочковидные бактерии — rodlike bacteria, rod-shaped bacteria, bacilli

    Самая распространенная форма бактерий. Палочковидные бактерии различаются по форме, величине в длину и ширину, по форме концов клетки, а также по взаимному расположению. Палочки могут быть правильной и неправильной формы, в том числе ветвящиеся. Общее число палочковидных бактерий значительно больше, чем кокковидных (см. также бациллы).

    Бактерии, вызывающие болезни человека, животных и растений.

    Группа бактерий (например, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Serratia marcescens и другие) с яркой окраской, обусловленной пигментацией самой клетки. Среди пигментов могут встречаться представители различных классов веществ: каротиноиды, феназиновые красители, пирролы, азахиноны, антоцианы и другие.

    Бактерии родов Propionibacterium, Veillonella, Clostridium, Selemonas, Micromonospora и другие, выделяющие пропионовую и уксусную кислоты как основные продукты брожения. Обитают в рубце и кишечнике жвачных животных. В промышленности используются, например, при производстве швейцарского сыра.

    Бактерии, обладающие специальными выростами – простеками. Большинство простековых бактерий обнаружено среди олиготрофных микроорганизмов, обитающих в воде. У фотосинтезирующих зелёных бактерий рода Prosthecochloris в простеках располагаются хлоросомы, содержащие бактериохлорофилл.

    Холодолюбивые бактерии, растущие с максимальной скоростью при температурах ниже 2°C. Психрофильные бактерии составляют большую группу сапрофитических микроорганизмов – обитателей почвы, морей, пресных водоёмов, сточных вод. К ним относятся некоторые железобактерии, псевдомонады, светящиеся бактерии, бациллы и другие. Некоторые психрофильные бактерии могут вызывать порчу продуктов питания, хранящихся при низкой температуре (см. также психрофильные организмы).

    Общим для всех пурпурных бактерий Rhodospirillales является способность использовать в качестве основного источника энергии свет, но многие растут и в темноте за счёт энергии, образуемой при окислительном фосфорилировании. Их фотосинтетический аппарат находится на внутренних мембранах – тилакоидах. По способности использовать в качестве донора электронов элементарную серу в группе пурпурных бактерий выделяют два семейства: пурпурные серные бактерии и пурпурные несерные бактерии.

    Группа бактерий (например, Chromatium, Thiocapsa, Ectothiorhodospira и Thiospirillum jenense), входящая в состав пурпурных бактерий. Отличительной особенностью этой группы является внутриклеточное отложение серы, образующейся при окислении H2S.

    Бактерии, которые могут расти на простых средах, содержащих одно вещество в качестве источника углерода и энергии, а также несколько неорганических солей для обеспечения потребности в других элементах. Для многих бактерий предпочтительным источником углерода служит глюкоза.

    Бактерии, превращающие органические вещества в неорганические, участвуя тем самым в круговороте веществ в природе; к сапрофитным относятся большинство бактерий.

    Хемоорганотрофные бактерии ( роды Photobacterium и Beneckea), в основном обитающие в морях; свечение этих бактерий наблюдается только в присутствии кислорода.

    Бактерии, временно накапливающие или выделяющие серу. Для аэробных серных бактерий (роды Beggiatoa, Thiothrix, Achromatium, Thiovulum) сера служит источником энергии, для анаэробных фототрофных серных бактерий ( род Chromatium) – донором электронов. Включения серы у некоторых бактерий представляют собой продукты обеззараживания сероводорода, часто присутствующего в местах обитания этих организмов.

    Бактерии, образующие капсулу ( более или менее толстые слои сильно обводнённого материала), которая отделяется в окружающую среду в виде слизи. Известный пример слизеобразующей бактерии – Leuconostoc mesenteroides, так называемая бактерия лягушачьей икры.

    Бактерии, обладающие способностью образовывать терморезистентные споры. Аэробные и факультативно анаэробные спорообразующие бактерии сведены в роды Sporolactobacillus, Bacillus и Sporosarcina, а анаэробные – роды Clostridium и Desulfotomaculum.

    Некоторые широко распространённые бактерии, «сидящие» на стебельках из слизи. К стебельковым бактериям, образующим специальные выросты или простеки, относятся Caulobacter и другие.

    Бактерии, встречающиеся главным образом в сероводородном иле, где органические вещества подвергаются анаэробному разложению. Эти бактерии приспособлены к использованию продуктов неполного разложения углеводов. Имеют большое экономическое значение, так как с их помощью можно, например, получать сероводород, а следовательно, и серу путём восстановления сульфатов морской воды за счёт органических отходов. К важнейшим и наиболее распространённым сульфатредуцирующим бактериям относятся Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Desulfotomaculum nigrificans, Desulfotomaculum orientis и другие.

    Теплолюбивые бактерии, хорошо растущие при температурах выше 40°C, для большинства из них верхний предел температуры 70°C (Thermoactinomyces vulgaris, Bacillus stearothermophilus). Некоторые термофильные бактерии способны расти при температурах более 70°C ( отдельные виды Bacillus и Clostridium), более 80°C ( Sulfolobus acidocaldarius) или даже 105°C ( Pyrodictium occultum) (см. также чёрные курильщики).

    уксуснокислые бактерии — acetic-acid bacteria, vinegar bacteria

    Группа бактерий, способных образовывать кислоты путём неполного окисления сахаров или спиртов. Конечными продуктами такого окисления могут быть уксусная, гликолевая, нейлоновая и другие кислоты. Уксусные бактерии делятся на две группы: peroxydans ( типичный представитель Gluconobacter oxydans), т. е. организмы, накапливающие уксусную кислоту в качестве промежуточного продукта, и suboxydans (например, Acetobacter aceti и Acetobacter pasteurianum), у которых уксусная кислота не окисляется дальше. Благодаря своей способности почти в стехиометрических количествах превращать органические соединения в частично окисленные органические продукты, эти бактерии имеют большое промышленное значение, в частности, используются для производства уксуса из продуктов, содержащих спирт.

    Бактерии, способные использовать свет как источник энергии, необходимой для роста. Это свойство присуще нескольким группам бактерий: 1) пурпурным, зёленым и галобактериям ( класс Anoxyphotobacteria), фотосинтез у которых протекает без выделения O2, и 2) цианобактериям ( класс Oxyphotobacteria), выделяющим O2 на свету (см. также фотосинтез).

    Большая группа хемолитотрофных бактерий, у которых CO2 является единственным и главным источником клеточного углерода. Почти все бактерии этого типа ассимилируют углерод CO2 через рибулозо-бисфосфатный цикл. Благодаря своей высокой специализации многие бактерии этой группы занимают монопольное положение в своей экологической нише.

    Бактерии, ассимилирующие органическое вещество в процессе окисления неорганического донора электронов.

    Бактерии, способные использовать неорганические ионы или соединения (ионы аммония, нитрита, сульфида, тиосульфата, сульфита, двухвалентного железа, а также элементарную серу, молекулярный водород и CO) в качестве доноров водорода или электронов, т. е. получать за счёт их окисления энергию для синтетических процессов.

    Бактерии, образующие различные красящие вещества или пигменты, вследствие чего их скопления в природе и на искусственных средах являются окрашенными в различный цвет (см. также хромобактерии).

    целлюлолитические бактерии — cellulose-fermenting bacteria, cellulolytic bacteria

    Бактерии, разлагающие целлюлозу. Целлюлолитические бактерии секретируют, в основном, эндоглюканазы, большинство из которых проявляет низкую активность по отношению к кристаллической целлюлозе; являются важным звеном в круговороте углерода в природе и существенной частью экосистемы (см. также целлюлоза).

    Русско-английский словарь терминов по микробиологии > бактерии

  • 14 чувство стыда

    Понятие, отражающее широкий спектр болезненных аффектов — замешательства, смирения, унижения, бесчестия, — сопровождающих чувство заброшенности, отвержения, позора или утраты уважения со стороны других. В формировании чувства стыда важную роль играют ранние переживания, связанные с выставлением на всеобщее обозрение, с презрением или разоблачением.
    В определенном смысле чувство стыда сопоставимо с тревогой, поскольку оба они представляют собой аффективный сигнал, предостерегающий от исполнения эксгибиционистских желаний и предвосхищающий возможное отвержение со стороны внешнего мира или Сверх-Я. Чувство стыда, таким образом, является защитой от эксгибиционистских желаний, основанной на антиципации отвержения за неправильное поведение. В дальнейшем такая защита может стать чертой характера, помогающей индивиду избегать бесчестия и сохранять уважение к себе. Она предполагает наличие такта, осторожности и сексуальной умеренности. В этом смысле чувство стыда охраняет идеалы и ценности, присущие не только индивиду, но и культуре.
    Один человек может испытывать стыд за выставление напоказ чего-то конкретного или за сам акт выставления напоказ. Другой может бояться быть отвергнутым или показаться несостоятельным, слабым, неполноценным, смешным, бесчестным или обманувшим чужие ожидания. Третий может опасаться любых действий — смотреть и чтобы смотрели на него, слушать и чтобы его слушали. Все такие способы выставления напоказ, даже связанные с любопытством, окрашиваются затем чувством стыда и должны быть отвергнуты.
    Один из возможных способов понимания чувства стыда (Wurmser, 1981) состоит в концептуализации внешнего, или объектного, полюса, где индивид чувствует себя пристыженным, и внутреннего полюса, связанного с самим индивидом, из-за которого он испытывает стыд. В процессе развития оба полюса интернализируются и формируют часть Я-идеала. Напряжение между полюсами ощущается затем как явное несоответствие между тем, что человек от себя ожидает, и тем, как он себя воспринимает.
    Важными способами защиты от чувства стыда являются обращение чувств против других людей — отношение к другим (вместо себя) с презрением и свысока — и использование таких аффектов, как пренебрежение, гнев и надменность. При этом высокомерие, надменность или пренебрежение являются реактивными образованиями против чувства стыда. Внутреннее чувство стыда может быть экстернализировано или спроецировано в виде идей отношения или воздействия извне. Бесстыдство является скорее защитой от чувства стыда, нежели его отсутствием. Бессознательное чувство стыда может проявляться в виде негативной терапевтической реакции, когда каждый успех должен быть "оплачен" самоуничижением и неудачей.
    Аффект стыда не обязательно требует наличия зрения; других форм восприятия и экспрессии достаточно для того, чтобы он мог возникнуть и у слепорожденных. Ранее полагали, что предшественниками тревоги и стыда являются ранние паттерны невыносимости пристального взгляда, а затем страх незнакомых людей. Чувство стыда появляется в фазе восстановления. Оно сопровождается ощущениями слабости, неопрятности и неполноценности, связанными с характерными для этой фазы конфликтами из-за разрыва симбиотических уз, с приучением к опрятности и фантазиями об исчезновении или лишении пениса.
    \
    Лит.: [29, 556, 578, 687, 904]

    Словарь психоаналитических терминов и понятий > чувство стыда

  • 15 поперечная дифференциальная защита

    1. Querdifferentialschutz, m

     

    поперечная дифференциальная защита
    Защита, применяемая для цепей, соединенных параллельно, срабатывание которой зависит от несбалансированного распределения токов между ними.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    transverse differential protection
    protection applied to parallel connected circuits and in which operation depends on unbalanced distribution of currents between them.
    [IEV ref 448-14-17]

    FR

    protection différentielle transversale
    protection pour circuits en parallèle, dont le fonctionnement dépend du déséquilibre des courants entre ces circuits
    [IEV ref 448-14-17]


    Поперечная дифференциальная токовая направленная защита линий

    Защита применяется на параллельных линиях, имеющих одинаковое сопротивление и включенных на одну рабочую систему шин или на разные системы шин при включенном шиносоединительном выключателе. Для ее выполнения вторичные обмотки трансформаторов тока ТА защищаемых линий соединяются между собой разноименными зажимами (рис. 7.21). Параллельно вторичным обмоткам трансформаторов тока включаются токовый орган ТО и токовые обмотки органа направления мощности OHM.

    5316
    Рис. 7.20. Упрощенная схема контроля исправности соединительных проводов дифференциальной токовой защиты линии

    Токовый орган в схеме выполняет функцию пускового органа ПО, а орган направления мощности OHM служит для определения поврежденной линии. В зависимости от того, какая линия повреждена, OHM замыкает левый или правый контакт и подает импульс на отключение выключателя Q1 или Q2 соответственно.
    Напряжение к OHM подводится от трансформаторов напряжения той системы шин, на которую включены параллельные линии.
    Для двухстороннего отключения поврежденной линии с обеих сторон защищаемых цепей устанавливаются одинаковые комплекты защит.
    Рассмотрим работу защиты, предположив для простоты, что параллельные линии имеют одностороннее питание.
    При нормальном режиме работы и внешнем КЗ (точка К1 на рис. 7.22, а) вторичные токи I 1 и I 2 равны по значению и совпадают по фазе. Благодаря указанному выше соединению вторичных обмоток трансформаторов тока токи в обмотке ТО I p на подстанциях 1 и 2 близки к нулю и защиты не приходят в действие.

    5317
    Рис. 7.21. Принципиальная схема поперечной токовой направленной защиты двух параллельных линий

    При КЗ на одной из защищаемых линий (например, на линии в точке К2 на рис. 7.22, б) токи I 1 и I 2 не равны (I 1>I 2). На подстанции 1 ток в ТО I р=I 1-I 2>0, а на подстанции 2 I р=2I 2. Если I р>I сз, пусковые органы защит сработают и подведут оперативный ток к органам направления мощности, которые выявят поврежденную цепь и замкнут контакты на ее отключение.
    При повреждении на линии вблизи шин подстанции (например, в точке КЗ на рис. 7.22, в) токи КЗ в параллельных линиях со стороны питания близки по значению и совпадают по фазе. В этом случае разница вторичных токов незначительна и может оказаться, что на подстанции 1 ток в ТО I р<I сз и защита не придет в действие. Однако имеются все условия для срабатывания защиты на подстанции 2, где I р=2I 1. После отключения выключателя поврежденной цепи на подстанции 2 ток в защите на подстанции 1 резко возрастет, и защита подействует на отключение выключателя линии W2. Такое поочередное действие защит называют каскадным, а зона, в которой I р<I сз, - зоной каскадного действия.
    В случае двухстороннего питания параллельных линий защиты будут действовать аналогичным образом, отключая только повредившуюся цепь.
    К недостаткам следует отнести наличие у защиты так называемой "мертвой" зоны по напряжению, когда при КЗ на линии у шин подстанции напряжение, подводимое к органу направления мощности, близко к нулю и защита отказывает в действии. Протяженность мертвой зоны невелика, и отказы защит в действии по этой причине крайне редки.
    В эксплуатации отмечены случаи излишнего срабатывания защиты. При обрыве провода с односторонним КЗ на землю (рис. 7.23) защита излишне отключала выключатель Q2 исправной линии, поскольку мощность КЗ в ней была направлена от шин, а в поврежденной линии ток отсутствовал.
    Отметим характерные особенности защиты. На рис. 7.21 оперативный ток к защите подводится через два вспомогательных последовательно включенных контакта выключателей Q1 и Q2. Эти вспомогательные контакты при отключении любого выключателя (Q1 или Q2) автоматически разрывают цепь оперативного тока и выводят защиту из работы для предотвращения неправильного ее действия в следующих случаях:
    - при КЗ на линии, например W1, и отключении выключателя Q1 раньше Q3 (в промежуток времени между отключения ми обоих выключателей линии W1 на подстанции 1 создадутся условия для отключения неповрежденной линии W2);
    - в нормальном режиме работы при плановом отключении выключателей одной из линий защита превратится в максимальную токовую направленную защиту мгновенного действия и может неправильно отключить выключатель другой линии при внешнем КЗ.
    Подчеркнем в связи со сказанным, что перед плановым отключением одной из параллельных линий (например, со стороны подстанции 2) предварительно следует отключить защиту накладками SX1 и SX2 на подстанции 1, так как при включенном положении выключателей на подстанции 1 защита на этой подстанции автоматически из работы не выводится и при внешнем КЗ отключит выключатель линии, находящейся под нагрузкой.
    Когда одна из параллельных линий находится под нагрузкой, а другая опробуется напряжением (или включена под напряжение), накладки на защите должны находиться в положении "Отключение" - на линии, опробуемой напряжением, "Сигнал" - на линии, находящейся под нагрузкой. При таком положении накладок защита подействует на отключение опробуемой напряжением линии, если в момент подачи напряжения на ней возникнет КЗ.

    5318
    Рис. 7.22. Распределение тока в схемах поперечных токовых направленных защит при КЗ:
    а - во внешней сети; б - в зоне действия защиты; в - в зоне каскадного действия; КД - зона каскадного действия
    5319
    Рис. 7.23. Срабатывание защиты при обрыве провода линии с односторонним КЗ на землю

    При обслуживании защит необходимо проверять исправность цепей напряжения, подключенных к OHM, так как в случае их обрыва к зажимам OHM будет подведено искаженное по фазе и значению напряжение, вследствие чего он может неправильно сработать при КЗ. Если быстро восстановить нормальное питание OHM не удастся, защиту необходимо вывести из работы.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-6.html]

    Тематики

    EN

    DE

    • Querdifferentialschutz, m

    FR

    Русско-немецкий словарь нормативно-технической терминологии > поперечная дифференциальная защита

  • 16 максимальная токовая защита с пуском по напряжению

    1. voltage controlled overcurrent relay

     

    максимальная токовая защита с пуском по напряжению

    [В.А.Семенов. Англо-русский словарь по релейной защите]


    Максимальная токовая защита с пуском от реле минимального напряжения

    Максимальная токовая защита реагирует на увеличение тока в защищаемом элементе сети. Она применяется для защиты линий, имеющих одностороннее питание, на линиях устанавливается со стороны источника питания и воздействует на отключение выключателя в случае повреждения на защищаемой линии или на шинах подстанций, питающихся от этой линии. Селективность защит обеспечивается подбором выдержек времени, нарастающих ступенями в сторону источника питания (рис. 7.5). Ступень времени Δt =t2-t1≈0,4÷0,8 с. Так, при повреждении в точке K1 по реле защит на подстанциях 1 и 2 будет проходить один и тот же ток . Однако защита на подстанции 1 сработает быстрее и отключит поврежденную линию. Защита на подстанции 2 в этом случае не успеет сработать на отключение и вернется в исходное положение.
    Токовая отсечка - это максимальная токовая защита, селективность действия которой обеспечивается не ступенчатым подбором выдержек времени в подавляющем большинстве случаев отсечка действует мгновенно, а выбором тока срабатывания. Известно, что ток КЗ уменьшается по мере удаления места КЗ от источника питания. Ток срабатывания отсечки Iсз по значению выбирается таким, чтобы отсечка надежно срабатывала при КЗ на заранее определенном участке линии (например, на участке АВ, рис. 7.6) и не приходила в действие при КЗ за пределами этого участка, где Iк< I сз, например в точке С. Таким образом, токовая отсечка защищает часть линии, а не всю линию.

    5306
    Рис. 7.2. Нормальный (а) и утяжеленный (б) режимы работы электрической сети с изолированной нейтралью

    5307
    Рис. 7.3. Замыкание двух фаз на землю в сети с изолированной нейтралью приводит к КЗ. Штриховой линией показан путь тока КЗ

    Токовая отсечка применяется для защиты линий с односторонним и двухсторонним питанием и, кроме того, для защиты трансформаторов. В последнем случае отсечка устанавливается с питающей стороны трансформатора и действует при повреждениях на вводах ВН и в некоторой части первичной обмотки. При повреждениях вторичной обмотки отсечка не срабатывает.
    Максимальная направленная защита (рис. 7.7) применяется для защиты сетей с двухсторонним питанием. Она реагирует на определенные значения тока КЗ и его направление. Орган направления в схеме защиты разрешает ей срабатывать на отключение выключателя, если ток КЗ направлен от шин в сторону защищаемой линии. Селективность действия пускового органа защиты достигается выбором выдержек времени по указанному выше ступенчатому принципу.
    Максимальные направленные защиты устанавливаются с обеих сторон защищаемых линий. В качестве основных защит их применяют в сетях напряжением до 35 кВ.
    Максимальная токовая защита с пуском от реле минимального напряжения. Одним из недостатков максимальных токовых защит является недостаточная чувствительность при КЗ в разветвленных (с большим числом параллельных линий) сильно загруженных сетях. Повышение чувствительности и улучшение отстройки от токов нагрузки достигаются применением пуска защит от реле минимального напряжения (рис. 7.8). Из схемы видно, что защита может действовать только при срабатывании реле KV, уставка которого выбирается ниже минимально возможного уровня рабочего напряжения. При КЗ напряжение в сети существенно понижается, реле напряжения срабатывает, предоставляя возможность токовому органу защиты действовать на отключение.
    Ток срабатывания токовых реле КА выбирается по значению длительного тока нагрузки нормального режима, в результате чего чувствительность защиты при КЗ резко повышается. При кратковременных перегрузках линий токовые реле могут замыкать свои контакты, что, однако, не приводит к срабатыванию защиты на отключение: этому препятствуют реле минимального напряжения, контакты которых в нормальном рабочем режиме разомкнуты.
    5308
    Рис. 7.4. Участки схемы, отключаемые при КЗ: К1-К4 - точки КЗ. Выключатели, отключившиеся при КЗ, зачернены

    5309
    Рис. 7.5. Применение максимальных токовых защит в сети с односторонним питанием

    5310
    Рис. 7.6. Зона действия отсечки на линии с односторонним питанием

    Наличие напряжения на зажимах реле минимального напряжения постоянно контролируется специальным устройством (на рис. 7.8 не показано), подающим сигнал и выводящим защиту из действия при обрывах и повреждениях вторичных цепей трансформаторов напряжения.
    5311
    Рис. 7.7. Принципиальная схема максимальной направленной защиты линии:
    КA - токовое реле (пусковой орган); KW - реле мощности (орган направления мощности КЗ); КТ - реле времени (орган выдержки времени)

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-2.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > максимальная токовая защита с пуском по напряжению

  • 17 поперечная дифференциальная защита

    1. transverse differential protection

     

    поперечная дифференциальная защита
    Защита, применяемая для цепей, соединенных параллельно, срабатывание которой зависит от несбалансированного распределения токов между ними.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    transverse differential protection
    protection applied to parallel connected circuits and in which operation depends on unbalanced distribution of currents between them.
    [IEV ref 448-14-17]

    FR

    protection différentielle transversale
    protection pour circuits en parallèle, dont le fonctionnement dépend du déséquilibre des courants entre ces circuits
    [IEV ref 448-14-17]


    Поперечная дифференциальная токовая направленная защита линий

    Защита применяется на параллельных линиях, имеющих одинаковое сопротивление и включенных на одну рабочую систему шин или на разные системы шин при включенном шиносоединительном выключателе. Для ее выполнения вторичные обмотки трансформаторов тока ТА защищаемых линий соединяются между собой разноименными зажимами (рис. 7.21). Параллельно вторичным обмоткам трансформаторов тока включаются токовый орган ТО и токовые обмотки органа направления мощности OHM.

    5316
    Рис. 7.20. Упрощенная схема контроля исправности соединительных проводов дифференциальной токовой защиты линии

    Токовый орган в схеме выполняет функцию пускового органа ПО, а орган направления мощности OHM служит для определения поврежденной линии. В зависимости от того, какая линия повреждена, OHM замыкает левый или правый контакт и подает импульс на отключение выключателя Q1 или Q2 соответственно.
    Напряжение к OHM подводится от трансформаторов напряжения той системы шин, на которую включены параллельные линии.
    Для двухстороннего отключения поврежденной линии с обеих сторон защищаемых цепей устанавливаются одинаковые комплекты защит.
    Рассмотрим работу защиты, предположив для простоты, что параллельные линии имеют одностороннее питание.
    При нормальном режиме работы и внешнем КЗ (точка К1 на рис. 7.22, а) вторичные токи I 1 и I 2 равны по значению и совпадают по фазе. Благодаря указанному выше соединению вторичных обмоток трансформаторов тока токи в обмотке ТО I p на подстанциях 1 и 2 близки к нулю и защиты не приходят в действие.

    5317
    Рис. 7.21. Принципиальная схема поперечной токовой направленной защиты двух параллельных линий

    При КЗ на одной из защищаемых линий (например, на линии в точке К2 на рис. 7.22, б) токи I 1 и I 2 не равны (I 1>I 2). На подстанции 1 ток в ТО I р=I 1-I 2>0, а на подстанции 2 I р=2I 2. Если I р>I сз, пусковые органы защит сработают и подведут оперативный ток к органам направления мощности, которые выявят поврежденную цепь и замкнут контакты на ее отключение.
    При повреждении на линии вблизи шин подстанции (например, в точке КЗ на рис. 7.22, в) токи КЗ в параллельных линиях со стороны питания близки по значению и совпадают по фазе. В этом случае разница вторичных токов незначительна и может оказаться, что на подстанции 1 ток в ТО I р<I сз и защита не придет в действие. Однако имеются все условия для срабатывания защиты на подстанции 2, где I р=2I 1. После отключения выключателя поврежденной цепи на подстанции 2 ток в защите на подстанции 1 резко возрастет, и защита подействует на отключение выключателя линии W2. Такое поочередное действие защит называют каскадным, а зона, в которой I р<I сз, - зоной каскадного действия.
    В случае двухстороннего питания параллельных линий защиты будут действовать аналогичным образом, отключая только повредившуюся цепь.
    К недостаткам следует отнести наличие у защиты так называемой "мертвой" зоны по напряжению, когда при КЗ на линии у шин подстанции напряжение, подводимое к органу направления мощности, близко к нулю и защита отказывает в действии. Протяженность мертвой зоны невелика, и отказы защит в действии по этой причине крайне редки.
    В эксплуатации отмечены случаи излишнего срабатывания защиты. При обрыве провода с односторонним КЗ на землю (рис. 7.23) защита излишне отключала выключатель Q2 исправной линии, поскольку мощность КЗ в ней была направлена от шин, а в поврежденной линии ток отсутствовал.
    Отметим характерные особенности защиты. На рис. 7.21 оперативный ток к защите подводится через два вспомогательных последовательно включенных контакта выключателей Q1 и Q2. Эти вспомогательные контакты при отключении любого выключателя (Q1 или Q2) автоматически разрывают цепь оперативного тока и выводят защиту из работы для предотвращения неправильного ее действия в следующих случаях:
    - при КЗ на линии, например W1, и отключении выключателя Q1 раньше Q3 (в промежуток времени между отключения ми обоих выключателей линии W1 на подстанции 1 создадутся условия для отключения неповрежденной линии W2);
    - в нормальном режиме работы при плановом отключении выключателей одной из линий защита превратится в максимальную токовую направленную защиту мгновенного действия и может неправильно отключить выключатель другой линии при внешнем КЗ.
    Подчеркнем в связи со сказанным, что перед плановым отключением одной из параллельных линий (например, со стороны подстанции 2) предварительно следует отключить защиту накладками SX1 и SX2 на подстанции 1, так как при включенном положении выключателей на подстанции 1 защита на этой подстанции автоматически из работы не выводится и при внешнем КЗ отключит выключатель линии, находящейся под нагрузкой.
    Когда одна из параллельных линий находится под нагрузкой, а другая опробуется напряжением (или включена под напряжение), накладки на защите должны находиться в положении "Отключение" - на линии, опробуемой напряжением, "Сигнал" - на линии, находящейся под нагрузкой. При таком положении накладок защита подействует на отключение опробуемой напряжением линии, если в момент подачи напряжения на ней возникнет КЗ.

    5318
    Рис. 7.22. Распределение тока в схемах поперечных токовых направленных защит при КЗ:
    а - во внешней сети; б - в зоне действия защиты; в - в зоне каскадного действия; КД - зона каскадного действия
    5319
    Рис. 7.23. Срабатывание защиты при обрыве провода линии с односторонним КЗ на землю

    При обслуживании защит необходимо проверять исправность цепей напряжения, подключенных к OHM, так как в случае их обрыва к зажимам OHM будет подведено искаженное по фазе и значению напряжение, вследствие чего он может неправильно сработать при КЗ. Если быстро восстановить нормальное питание OHM не удастся, защиту необходимо вывести из работы.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-6.html]

    Тематики

    EN

    DE

    • Querdifferentialschutz, m

    FR

    Русско-английский словарь нормативно-технической терминологии > поперечная дифференциальная защита

  • 18 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 19 поперечная дифференциальная защита

    1. protection différentielle transversale

     

    поперечная дифференциальная защита
    Защита, применяемая для цепей, соединенных параллельно, срабатывание которой зависит от несбалансированного распределения токов между ними.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    transverse differential protection
    protection applied to parallel connected circuits and in which operation depends on unbalanced distribution of currents between them.
    [IEV ref 448-14-17]

    FR

    protection différentielle transversale
    protection pour circuits en parallèle, dont le fonctionnement dépend du déséquilibre des courants entre ces circuits
    [IEV ref 448-14-17]


    Поперечная дифференциальная токовая направленная защита линий

    Защита применяется на параллельных линиях, имеющих одинаковое сопротивление и включенных на одну рабочую систему шин или на разные системы шин при включенном шиносоединительном выключателе. Для ее выполнения вторичные обмотки трансформаторов тока ТА защищаемых линий соединяются между собой разноименными зажимами (рис. 7.21). Параллельно вторичным обмоткам трансформаторов тока включаются токовый орган ТО и токовые обмотки органа направления мощности OHM.

    5316
    Рис. 7.20. Упрощенная схема контроля исправности соединительных проводов дифференциальной токовой защиты линии

    Токовый орган в схеме выполняет функцию пускового органа ПО, а орган направления мощности OHM служит для определения поврежденной линии. В зависимости от того, какая линия повреждена, OHM замыкает левый или правый контакт и подает импульс на отключение выключателя Q1 или Q2 соответственно.
    Напряжение к OHM подводится от трансформаторов напряжения той системы шин, на которую включены параллельные линии.
    Для двухстороннего отключения поврежденной линии с обеих сторон защищаемых цепей устанавливаются одинаковые комплекты защит.
    Рассмотрим работу защиты, предположив для простоты, что параллельные линии имеют одностороннее питание.
    При нормальном режиме работы и внешнем КЗ (точка К1 на рис. 7.22, а) вторичные токи I 1 и I 2 равны по значению и совпадают по фазе. Благодаря указанному выше соединению вторичных обмоток трансформаторов тока токи в обмотке ТО I p на подстанциях 1 и 2 близки к нулю и защиты не приходят в действие.

    5317
    Рис. 7.21. Принципиальная схема поперечной токовой направленной защиты двух параллельных линий

    При КЗ на одной из защищаемых линий (например, на линии в точке К2 на рис. 7.22, б) токи I 1 и I 2 не равны (I 1>I 2). На подстанции 1 ток в ТО I р=I 1-I 2>0, а на подстанции 2 I р=2I 2. Если I р>I сз, пусковые органы защит сработают и подведут оперативный ток к органам направления мощности, которые выявят поврежденную цепь и замкнут контакты на ее отключение.
    При повреждении на линии вблизи шин подстанции (например, в точке КЗ на рис. 7.22, в) токи КЗ в параллельных линиях со стороны питания близки по значению и совпадают по фазе. В этом случае разница вторичных токов незначительна и может оказаться, что на подстанции 1 ток в ТО I р<I сз и защита не придет в действие. Однако имеются все условия для срабатывания защиты на подстанции 2, где I р=2I 1. После отключения выключателя поврежденной цепи на подстанции 2 ток в защите на подстанции 1 резко возрастет, и защита подействует на отключение выключателя линии W2. Такое поочередное действие защит называют каскадным, а зона, в которой I р<I сз, - зоной каскадного действия.
    В случае двухстороннего питания параллельных линий защиты будут действовать аналогичным образом, отключая только повредившуюся цепь.
    К недостаткам следует отнести наличие у защиты так называемой "мертвой" зоны по напряжению, когда при КЗ на линии у шин подстанции напряжение, подводимое к органу направления мощности, близко к нулю и защита отказывает в действии. Протяженность мертвой зоны невелика, и отказы защит в действии по этой причине крайне редки.
    В эксплуатации отмечены случаи излишнего срабатывания защиты. При обрыве провода с односторонним КЗ на землю (рис. 7.23) защита излишне отключала выключатель Q2 исправной линии, поскольку мощность КЗ в ней была направлена от шин, а в поврежденной линии ток отсутствовал.
    Отметим характерные особенности защиты. На рис. 7.21 оперативный ток к защите подводится через два вспомогательных последовательно включенных контакта выключателей Q1 и Q2. Эти вспомогательные контакты при отключении любого выключателя (Q1 или Q2) автоматически разрывают цепь оперативного тока и выводят защиту из работы для предотвращения неправильного ее действия в следующих случаях:
    - при КЗ на линии, например W1, и отключении выключателя Q1 раньше Q3 (в промежуток времени между отключения ми обоих выключателей линии W1 на подстанции 1 создадутся условия для отключения неповрежденной линии W2);
    - в нормальном режиме работы при плановом отключении выключателей одной из линий защита превратится в максимальную токовую направленную защиту мгновенного действия и может неправильно отключить выключатель другой линии при внешнем КЗ.
    Подчеркнем в связи со сказанным, что перед плановым отключением одной из параллельных линий (например, со стороны подстанции 2) предварительно следует отключить защиту накладками SX1 и SX2 на подстанции 1, так как при включенном положении выключателей на подстанции 1 защита на этой подстанции автоматически из работы не выводится и при внешнем КЗ отключит выключатель линии, находящейся под нагрузкой.
    Когда одна из параллельных линий находится под нагрузкой, а другая опробуется напряжением (или включена под напряжение), накладки на защите должны находиться в положении "Отключение" - на линии, опробуемой напряжением, "Сигнал" - на линии, находящейся под нагрузкой. При таком положении накладок защита подействует на отключение опробуемой напряжением линии, если в момент подачи напряжения на ней возникнет КЗ.

    5318
    Рис. 7.22. Распределение тока в схемах поперечных токовых направленных защит при КЗ:
    а - во внешней сети; б - в зоне действия защиты; в - в зоне каскадного действия; КД - зона каскадного действия
    5319
    Рис. 7.23. Срабатывание защиты при обрыве провода линии с односторонним КЗ на землю

    При обслуживании защит необходимо проверять исправность цепей напряжения, подключенных к OHM, так как в случае их обрыва к зажимам OHM будет подведено искаженное по фазе и значению напряжение, вследствие чего он может неправильно сработать при КЗ. Если быстро восстановить нормальное питание OHM не удастся, защиту необходимо вывести из работы.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-6.html]

    Тематики

    EN

    DE

    • Querdifferentialschutz, m

    FR

    Русско-французский словарь нормативно-технической терминологии > поперечная дифференциальная защита

См. также в других словарях:

  • Что, где, когда — Что? Где? Когда? Эмблема телеигры: сова (символ мудрости) с короной Жанр телевизионная игра Автор Владимир Ворошилов Режиссёр Владимир Ворошилов (1975 2000) Борис Крюк (2001 наст. время) Производство …   Википедия

  • Что, Где, Когда? — Что? Где? Когда? Эмблема телеигры: сова (символ мудрости) с короной Жанр телевизионная игра Автор Владимир Ворошилов Режиссёр Владимир Ворошилов (1975 2000) Борис Крюк (2001 наст. время) Производство …   Википедия

  • Что-Где-Когда — Что? Где? Когда? Эмблема телеигры: сова (символ мудрости) с короной Жанр телевизионная игра Автор Владимир Ворошилов Режиссёр Владимир Ворошилов (1975 2000) Борис Крюк (2001 наст. время) Производство …   Википедия

  • Что, где, когда? — Что? Где? Когда? Эмблема телеигры: сова (символ мудрости) с короной Жанр телевизионная игра Автор Владимир Ворошилов Режиссёр Владимир Ворошилов (1975 2000) Борис Крюк (2001 наст. время) Производство …   Википедия

  • Что, Где, Когда — Что? Где? Когда? Эмблема телеигры: сова (символ мудрости) с короной Жанр телевизионная игра Автор Владимир Ворошилов Режиссёр Владимир Ворошилов (1975 2000) Борис Крюк (2001 наст. время) Производство …   Википедия

  • Что?Где?Когда? — Что? Где? Когда? Эмблема телеигры: сова (символ мудрости) с короной Жанр телевизионная игра Автор Владимир Ворошилов Режиссёр Владимир Ворошилов (1975 2000) Борис Крюк (2001 наст. время) Производство …   Википедия

  • Что Где Когда — Что? Где? Когда? Эмблема телеигры: сова (символ мудрости) с короной Жанр телевизионная игра Автор Владимир Ворошилов Режиссёр Владимир Ворошилов (1975 2000) Борис Крюк (2001 наст. время) Производство …   Википедия

  • Что где когда — Что? Где? Когда? Эмблема телеигры: сова (символ мудрости) с короной Жанр телевизионная игра Автор Владимир Ворошилов Режиссёр Владимир Ворошилов (1975 2000) Борис Крюк (2001 наст. время) Производство …   Википедия

  • Что? Где? Когда? — Эта статья  о телевизионной игре. О турнирах и о спортивной версии игры см. Что? Где? Когда? (спортивная версия). Запрос «ЧГК» перенаправляется сюда; см. также другие значения. Что? Где? Когда? …   Википедия

  • Ликвидность — (Liquidity) Ликвидность это мобильность активов, обеспечивающая возможность бесперебойной оплаты обязательств Экономическая характеристика и коэффициент ликвидности предприятия, банка, рынка, активов и инвестиций как важный экономический… …   Энциклопедия инвестора

  • ВАССЕРМАНА РЕАКЦИЯ — ВАССЕРМАНА РЕАКЦИЯ. Проблема серо диагноза сифилиса трактуется во всемирной литературе с 1906 г., когда Вассерма ном вместе с Нейсером и Бруком (Neisser, Bruck) была предложена реакция, которая получила его Имя. По этому вопросу скопился огромный …   Большая медицинская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»